Overblog
Editer l'article Suivre ce blog Administration + Créer mon blog
17 mars 2011 4 17 /03 /mars /2011 00:04

Depuis quelques jours le monde découvre, abasourdi, l'ampleur des dégâts causés au Japon par le séisme, et surtout le tsunami qui s'est créé en plein océan pacifique, à quelques 140 kilomètres de la côte nord est du Japon.

 

epicentre

 

Si vous voulez avoir un panorama de ces dégâts, allez voir cette vidéo chinoise.

 

Les dégâts créés au Japon par le Tsunami

 

Ces images sont extrêmement impressionnantes. Voici quelques échantillons :

 

arrivée du tsunami

L'arrivée du tsunami

 

tourbillon

Un immense tourbillon formé au reflux de la masse liquide. Apercevez un bateau près du centre, qui semble minuscule

 

 

incendie1

Incendie dans un parc de stockage d'hydrocarbures

 

incendie2

Un autre incendie ( stockage de gaz )

 

incendie urbain

Incendie urbain, ville de Sandaï

 

tsunami sur l'aéroport

Filmé depuis un hélicoptère, le tsunami déferle sur l'aéroport de Sandaï

 

aéroport

Une partie de l'aéroport de Sandaï, dévasté par le tsunami

 

chasseur dans immeuble

Sans commentaire .....

 

Nous attendons les images des dégâts subis par la centrale nucléaire installée en bord de mer. Elles ne sont pas diffusées pour ne pas créer de panique au sein de la population.

On dit que " gouverner, c'est prévoir ". En la matière c'est prévoir les conséquences, que l'on pourrait appeler "secondaires" ou " collatérales" d'une telle catastrophe naturelle. Le Japon, surpeuplé, possède 58 réacteurs nucléaires, pour subvenir à ses besoins en électricité. Un réacteur nucléaire, c'est une cuve en acier, très résistante, dans laquelle se trouve des barres d'un matériau fissile. Techniquement, ce sont des tubes qu'on appelle des "crayons" dans lesquelles sont empilés des éléments fissiles, mélanges d'oxydes, qui ont l'aspect de cachets d'aspirine.

Par rapport à une bombe atomique, qui se comporte comme un explosif, un réacteur ressemble à un amas de braises. Dans ces barres, la décomposition d'uranium 235, voire d'un certain pourcentage de Plutonium 239 dégage de la chaleur et provoque l'émission de neutrons qui, frappant d'autres atomes d'uranium 238, provoquent des réactions secondaires.

Pour bien comprendre le fonctionnement d'un réacteur, téléchargez ma bande dessinée "Energétiquement vôtre" sur le site de Savoir sans Frontières http://www.savoir-sans-frontieres.com (près de 400 albums de la série des Aventures d'Anselme Lanturlu, gratuitement téléchargeables, en 36 langues, sans écho médiatique, toutes presses confondues ).

Il faut un "fluide caloporteur" qui circule en permanence dans cette cuve, ce coeur du réacteur, pour évacuer les calories, la chaleur dégagée par les réactions de fission, sinon le pire peut se produire.

Je ne suis pas omniscient.

Considérant que j'ai le devoir de tenter d'éclaircir des informations, de m'efforce de les diffuser, je m'informe, souvent dans l'urgence, quand cela n'est pas dans la précipitation, quand il s'agit de faits d'actualité. Je le fais en marge des nombreuses activités que je dois mener de front (j'ai deux nouveaux livres à écrire et des recherches de MHD à conduire, des calculs complexes à faire).

Je profite de cette remarque pour demander à des dizaines de lecteurs qui, quotidiennement me sollicitent pour que j'acceptent de figurer sur "leur liste de discussion" de s'abstenir de le faire. Je n'ai pas le temps d'échanger à bâtons rompus, comme sur un blog. Des lycéens, me sollicitent pour leurs TPE (je leur demande de s'abstenir : je n'ai absolument pas le temps de m'occuper d'eux). D'autres s'attendent à ce que je réponde à des questions comme " pourriez-vous m'expliquer en termes simples la relativité ? " ou "que pensez-vous de la théorie de la Terre creuse ?" . A moins que ce ne soit pour me dire " je suis personnellement très dubitatif à propos de .... pourriez vous me fournir des arguments propres à convaincre le sceptique que je suis ? ". Certains, étant tombés sur des sites ou des vidéos qui ont retenu leur intérêt, se contentent de m'en " forwarder " les adresses, sans explication. Si celles-ci ne sont pas assorties de quelques lignes d'explication, je n'ai pas le temps matériel d'aller explorer chacun de ces contenus.

Parfois, des lecteurs me posent une question à laquelle je réponds laconiquement, cette réponse pouvant être simplement " je ne sais pas". Il arrive que l'interloculeur insiste, ne comprenant pas pourquoi "un scientifique tel que moi ne prend pas le temps de répondre de manière convenable et argumentée". Parfois l'échange se termine par un lettre assortie d'insultes violentes.

Ceci étant, ce que je reçois en continu, quotidiennement, constitue une documentation irremplaçable, et c'est grâce à ces apports et éclaircissements de spécialistes que je peux être mieux équipé pour tenter de vous informer. Certains, qui me suivent de longue date, savent me fournir ces informations, avec quelques lignes de présentation, voire une image, en me disant "il me semble que ceci est important ", et je leur en sais gré. D'autres savent découper un document vidéo pour en extraire des éléments clé.

Quand je construis une nouvelle page, vous pourrez constater que je ne me contente pas d'indiquer une adresse URL d'un article ou d'une vidéo. Je fais de nombreuses copies d'écran, je compose mon propre texte et il est fréquent que le montage d'une simple page, où des tâches élémentaires se trouvent accumulées, représent de 6 à 12 heures de travail.

Dans ce qui va suivre, je vais corriger ce que j'ai mis en ligne hier, rapidement, concernant les réacteurs japonais, et que des lecteurs ont aussitôt corrigé. Non, il ne s'agit pas de réacteurs à eau pressurisée, mais de réacteurs à eau bouillante.

Je donne ces précisions dans ce qui va suivre.

Abordons le schéma des réacteurs à eau pressurisée, solution d'origine américaine, majoritairement mise en oeuvre en France

A la pression atmosphérique, l'eau bout à 100°. A plus faible température en haut du Mont Blanc. Et inversement à plus de cent degrés si cette eau est à une pression supérieure à un bar.

Si la chaleur n'est pas évacuée en continu, ces barres, métalliques, peuvent fondre (c'est la "fusion du coeur") et le résultat de cette fusion peut se rassembler en fond de cuve, en constituant ce qu'il faut avant tout éviter : que ce matériau soit confiné, ce qui accroîtrait drastiquement le dégagement d'énergie.

En effet, un réacteur nucléaire est un lieu où se produisent des réactions en chaîne, que l'ont doit soigneusement contrôler. Ces barres de matériau fissile pendant comme des jambons, dans la cuve du réacteur. Autour de celles-ci circule un fluide qui collecte les calories (de l'eau sous 150 bars, dans le cas des réacteurs à eau pressurisée, les PWR : pressurized water reactors). Cette eau entre dans la cuve sous une température de 295°C et ressort à 330°C . Le débit est considérable : 60.000 mètres cubes à l'heure, soit seize mètres cubes par seconde. Dans cette formule, on décide d'isoler ce circuit primaire du second circuit, couplé au premier par un échangeur, et qui sera envoyé vers la turbine à gaz, actionnant une génératrice électrique.

 

 

réacteur à eau pressurisée

 

En violet : le circuit primaire empli d'eau pressurisée, circulant dans l'enceinte du coeur du réacteur. En bleu et rouge, le circuit secondaire. Dans l'échangeur, situé dans l'enceinte de confinement du réacteur, cette eau (bleu foncé à l'état liquide) passe à l'état de valeur, en rouge. Cette vapeur actionne alors du turbine à gaz à deux étage : haute et basse pression. La vapeur, détendue et refroidie, passe alors dans un condenseur, où elle se reliquéfie

Un système produisant de l'énergie possède une source chaude et une source froide. La source chaude, ce sont les "crayons" du coeur du réacteur, baignant dans de l'eau sous pression, au sein desquels se produisent des réactions de fission, exo-énergétiques. La source froide, c'est l'air atmosphérique (pour les réacteurs qui utilisent ce système terminal de réfrigération). Les deux premiers systèmes, fonctionnant en boucles fermées, sont couplés avec un troisième, en contact avec l'air atmosphérique, grâce à d'immenses tours de refroidissement que l'on voit, flanquant les centrales françaises.

On fait ruisseler l'eau, le long de la paroi interne de ces tours, ouvertes en bas pour permettre à l'air d'y circuler. Cette eau communique ainsi la chaleur collectée dans le condenseur, à l'air qui monte dans la tour. Au passage, une partie de l'eau se trouve vaporisée ( 500 litres par seconde). Il faut donc disposer d'une alimentation en eau à proximité (fleuve ou mer). C'est cette eau vaporisée qui fait que les tours sont surmontées d'un panache de vapeur, lorsque le réacteur est en fonctionnement.

Il y a en France 58 réacteurs à eau pressurisée. Liste des réacteurs français.

Passons aux réacteurs à eau bouillante, du type de ceux équipant les centrales japonaises.

Comme vous, je découvre et je tente d'expliquer. Voyons le schéma suivant :

 

réacteur à eau bouillante

Les réacteurs à eau bouillante (REB) des centrales japonaises

Voir aussi : http://www.laradioactivite.com/fr/site/pages/Reacteurs_REB.htm

La comparaison avec le schéma précédent est immédiate. Il n'y a plus qu'un seul circuit fermé. C'est l'eau qui est envoyée dans le coeur du réacteur qui se trouve vaporisée et est ensuite dirigée directement vers la turbine à gaz à deux étage. A gauche (1), le coeur, dans son enveloppe en acier. En (2) les éléments combustibles. En (3) les barres de contrôle qui dans ce montage doivent monter et ne peuvent plus, en cas d'urgence, tomber par gravité.

L'eau à l'état liquide (bleue) est un meilleur conducteur de la chaleur que la vapeur d'eau (en rouge, à la partie supérieure du coeur).

En sortie de turbine l'eau en train de retourner à l'état liquide, dans le condenseur, est figurée en violet. Il n'y a pas de tour de refroidissement. C'est de l'eau de mer, en gris, qui est envoyée dans le condenseur.

Comment pilote-t-on l'activité d'un réacteur nucléaire ?

En utilisant des barres de contrôle (par exemple en cadmium) qui absorbent les neutrons, mais sans que ce phénomène ne donne lieu à de nouvelles réactions nucléaire exo-énergétiques. Quand ces barres sont complètement descendues (ou remontées, dans le cas des montages japonais), l'activité du réacteur devient insignifiante.

A l'inverse, c'est le relèvement (ou l'abaissement dans le montage japonais) de ces barres qui provoquera le démarrage du réacteur, lors de sa mise en fonctionnement. On dira alors " que le réacteur diverge ".

Si on constate une défaillance quelconque dans le système d'évacuation de la chaleur produite dans le coeur du réacteur, là où se trouvent les barres, il faut soit mettre en oeuvre un système de pompage de secours, soit réduire drastiquement la puissance produite en descendant les barres de contrôle (ou en les montant, dans le cas des montages japonais).

La production d'énergie électrique s'effectue à l'aide d'alternateurs, entraînés par des turbines à gaz. La vapeur qui circule dans ces turbines doit être transformé en eau, liquide, dans un condenseur. Ces condenseurs sont ces hautes tours que l'ont voit, flanquant le local où se trouve le réacteur nucléaire, en France. La vapeur d'eau s'y condense et est récupérée dans la partie basse de la tour. Une partie de l'eau s'évapore, la perte étant de 500 litres par seconde.

On ne trouve pas de telles structures sans les réacteurs japonais. Pourquoi ? Parce qu'on utilise de l'eau de mer pour cette réfrigération. Pour des raisons d'économie et de rentabilité, les Japonais ont installé leurs réacteurs à proximité de l'océan, ce qui est une belle connerie, dans un pays dont les côtes peuvent être frappées par des tsunami.

 

implantation au Japon

L'implantation des centrales nucléaires japonaises, en bord de mer (...)

 

J'imagine que les ingénieurs ont étudié ces installations vis à vis d'un certain nombre de risques. Tous les réacteurs nucléaires japonais sont construit en respectant des normes anti sismiques. Celles-ci correspondent à la valeur 7 sur l'échelle de Richter et traduisent une possibilité d'accélération horizontale d'un "g". La technique consiste à poser le bâtiment sur l'équivalent des "cylindre-blocks", en beaucoup plus gros.

Pour info, la secousse sismique ressentie par le Japon a atteint la magnitude 8,9.

Cliquez sur le lien. Vous verrez, en bas de la page, qu'un séisme de magnitude 8,9 peut créer des dommages à des centaines de kilomètres de distance de l'épicentre. C'est ce qui s'est passé, l'épicentre se situant à la frontière entre deux plaques, à 140 km de distance.

Grosso modo, la magnitude est la mesure logarithmique de la puissance d'un séisme (ce qui doit être corrigé en tenant compte de la durée des secousses et du type d'ondes mises en oeuvre).

En ayant dimensionné leurs installations pour une magnitude de 7 les Japonais ont sous-estimé la puissance de séismes à venir d'un facteur quatre vingt (dix puissance 1,9).

 

fracture_route.gif

Fait étonnant : cette route s'est fracturée selon sa ligne médiane.

L'explication d'un lecteur : il est fréquent que des routes soient "fabriquées" en deux temps, par moitié, leur ligne médiane constituant une amorce de fracture

 

Je rappelle brièvement la "raison suffisante" des secousses sismiques. Sur une planche du début de la page on a figuré les plaques tectoniques, qui peuvent être comparées à des plaques de glace flottant à la surface d'un fleuve. Celles-ci peuvent se chevaucher. Dans le cas de ce séisme japonais il s'agit de la rencontre entre la plaque nipponne de Okhotsk et la plaque Pacifique. L'épicentre est situé à une profondeur de 10.000 mètres. L'une des deux plaques passe sous l'autre (phénomène de subduction). Ces plaque ne sont pas "lubrifiées" et ce glissement ne s'effectue que par à-coups. Ces à-coups sont la source de tremblements de terre. Quand ce ré arrangement s'effectue sou l'eau, le relèvement d'une des plaques soulève une vaste masse liquide. Ce soulèvement, pour quelqu'un qui naviguerait juste au dessus de cet événement, serait imperceptible. Il peut s'évaluer en dizaines de centimètres. Mais si des centaines de kilomètres carrés d'océan sont soulevés de 10 cm, voire plus, ceci représente une énergie potentielle considérable, qui va se dissiper avec le départ d'ondes de surface de grande longueur d'onde, se propageant à très grande vitesse (de l'ordre de la centaine de kilomètres à l'heure). Lorsque ce tsunami arrive près d'une côté, si le relèvement du fond s'effectue de manière progressive, la longueur d'onde diminue, pendant que l'amplitude de la variation de niveau croît. Ainsi une vague qui représentait une variation de 10 cm, à peine perceptible, d'une onde ayant une largeur (on parle de longueur d'onde) de dix kilomètres se transformera, près de la côte en une vague de dix mètres de haut et dont la longueur d'onde se chiffre alors en centaines de mètres. Au plus près, la vague pourra déferler.

Ce séisme aurait provoqué un déplacement de l'ensemble de la plaque portant le Japon de 2,4 mètres. Ce chiffre devrait être multiplié par dix au niveau de la zone de subduction, près de l'épicentre. Cartes et coordonnées GPS à revoir. Ce mouvement a eu une incidence sur la Terre entière, en entraînant un déplacement de l'ensemble de la croûte terrestre de 25 cm, ce qui entraîne un racourcissement des jours. Ce séisme est un des cinq plus puissants enregistrés sur Terre depuis qu'on y effectue des relevés sismographiques.

Ce qui a entraîné un disfonctionnement dans l'ensemble de réacteurs du site Fukushima ne découle pas du séisme, mais du fantastique tsunami, avec sa vague de dix mètres de haut (ce qui ne s'était jamais produit au Japon depuis des centaines d'années). Il n'existe pas de moyens de se protéger d'un tel impact. Ceux qui connaissent la mer savent ce que peuvent produire des vagues de tempêtes. Elles peuvent éclater des digues, tordre des ferrures de forte section. Il y a une cinquantaine d'année un homme avait voulu construire près de Marseille une attraction qu'il avait nommée "téléscaphe". Le principe était celui d'un téléphérique sous-marin. Mais au lieu de suspendre des bennes à un câble, on aurait accroché des nacelles emplies d'air, à un câble circulant sur des pylônes ancrés sur le fond. Le but était d'amener nos touristes sous-marins à proximité de " l'arche des Farillons ", au bout de l'île Maïre, voisine, un superbe décore sous-marin, que je connais bien. La base de départ du téléscaphe devait être implantée à l'est du "Cap Croisette".

 

Croisette.

Le petit port du Cap Croistte, en 1958, à quelques centaines de mètres du point de départ prévu pour le téléscaphe.

 

Les marins prévinrent l'ingénieur :

- Vous savez, dans notre région, nous avons un vent d'Est qu'on appelle le Labé. Et quand il se déchaîne, certains jours d'hiver, les vagues sont sacrément puissantes.

L'ingénieur passa outre. Les premiers pylônes furent installés, et furent emportés comme des fétus de paille l'hiver suivant, par la première tempête de Labé qui se présenta.

Je cite cette anecdote pour évoquer la fantastique puissance de la mer (l'eau est huit cent fois plus dense que l'air). Un lecteur me signale des effets du tsunami qui n'ont pas été évoqués dans les médias. La vague peut avoir entraîné des mouvements de sédiments qui pourraient avoir obturé les "crépines" immergées, à travers lesquelles l'eau de mer de refroidissement serait prélevée. Les dispositifs de secours qui auraient été prévus, comme de l'eau stockée dans de vastes citernes, auraient pu être mis hors d'usage par l'impact de la vague. Même chose pour des installations de secours fonctionnant avec des groupes électrogènes.

Sur le powerpoint ci-dessus vous avez pu voir les dégâts que le tsunami avait pu causer, impressionnants. Si les ingénieurs japonais avaient conçu leurs installations en tenant compte d'un risque sismique, ils n'avaient de toute évidence pas envisagé que la centrale puisse être frappée par une vague de cette intensité. Même si les bâtiments les plus visibles ont pu tenir le coup, quid du reste de l'installation, du local des pompes, de la salle de contrôle, du système d'alimentation des pompes en puissance électrique ? Il suffit qu'un seul de ces éléments soit endommagé pour que le geste d'arrêt du réacteur, ou de réfrigération du coeur par un système de secours ne puisse être mis en oeuvre. Ajoutons, fait aggravant, que dans le système japonais les barres de contrôle ne peuvent tomber par gravité, mais doivent être relevées !

Les réacteurs japonais sont conçus pour réagir à la sismicité. La secousse terrestre a précédé l'arrivée du tsunami. L'épicentre étant à 140 km de la côte et le temps de propagation ayant été de 20 minutes, la vagues a parcouru cette distance à une vitesse de 300 km/h. Les systèmes de sécurité des réacteurs, conçus pour encaisser des secousses sismiques de force 7, ont-ils fonctionné correctement, sous l'effet d'une secousse approchant la force 9 ? L'enceinte censée assurer le confinement a-t-elle été endommagée, fissurée ?

On ne connaît pas actuellement (14 mars 2011) la nature et l'étendue des dommages subis par les réacteurs japonais. Le tableau semble s'aggraver d'heure en heure. Une défaillance dans le système de refroidissement peut faire que les barres de combustible, au lieu de baigner dans de l'eau chaude, se trouvent environnées de vapeur, dont la température ira croissant. Celle-ci se combinera alors avec le métal constituant les enveloppes des "crayons". Cette oxydation, prélevant l'oxygène, libérera des grandes quantités d'hydrogène et disséminera dans la vapeur des éléments devenus radioactifs. On a parlé dans les jours précédents d'un envoi d'hydrogène pour refroidir le coeur. Il semble que ceci soit faux. Quand cet hydrogène a commencé à envahir le circuit unique du réacteur à eau bouillante, les ingénieurs ont dû lui permettre de s'échapper, pour éviter que le coeur lui-même n'explose (...), si cela n'a pas déjà été le cas. En se combinant avec l'oxygène de l'air, cela a donné cette explosion, qui semble bien avoir soufflé le toit d'un des bâtiments. Je parle de la première explosion, celle du samedi 12, le lendemain du tsunami.

Les ingénieurs japonais en sont arrivés à tenter de contrôler la montée en température du coeur (des coeurs des trois réacteurs) en y injectant ... de l'eau de mer, directement, ce qui revebait à rendre ces unités inutilisables, à cause de la corrosion.

Qu'est-ce qui fonctionne encore dans ces installations ? Bien malin qui pourrait le dire et il est possible que les ingénieurs Nippons ne le sachent pas non plus. On a vu que les barres de contrôle devaient être relevées. Peuvent-elles l'être encore maintenant ? Si la réponse est non, il sera impossible de descendre le niveau d'activité du réacteur. Par ailleurs l'eau de mer envoyée dans le coeur ressort porteuse d'une radioactivité qui est renvoyée dans les eaux du Pacifique...

L'erreur majeure a été :

- De construire ces réacteurs en bord de mer

- De sous-estimer la magnitude des séismes à venir ( 8,9 au lieu de 7 ) c'est à dire de sous-évaluer la puissance destructrices d'un facteur 80.

Si les locaux de la centrale nucléaire japonaise ont été ravagés comme ont pu l'être les quartiers de la ville de Sandaï, ou son aéroport, bonjour les dégâts !

Il n'existe pas de moyen de se protéger d'un tsunami d'une telle puissance. On ne peut pas envisager de monter un réacteur nucléaire et toutes ses installations sur ... pilotis. La solution aurait été de loger ces installations au dessus du niveau de la mer, à une altitude suffisante. Quinze mètres auraient suffi : une simple colline. Or le Japon n'en manque pas : 71 % du pays est sous forme de montagnes. Mais dans ce cas, en envisageant d'utiliser l'eau de mer comme réfrigérant, on aurait perdu en rendement en dépensant de la puissance pour pomper cette eau, avec le fort débit requis ( seize mètres cube par seconde ).

Prévoir ....

Un spécialiste Nippon de sismologie avait vainement, en 2006, insisté sur la nécessité de revoir les dispositions relatives à la résistances des centrales nucléaires aux séismes. Lien

 

Ishibashi

Le professeur Ishibashi

Sismologue, Professeur au Centre de recherche sur la sécurité urbaine à l'université de Kobé

 

De toute façon, dans un pays sensible aux tsunami, construire toutes les centrales en bord de mer était de l'irresponsabilité totale.

 

 

Les photos satellites, comparatives, montrant le site, avant et après :

 

site avant

site après

 

16 mars 2011 : Il y a eu plusieurs explosions. La première a soufflé la partie supérieure du bâtiment abritant le réacteur numéro 1. Celle-ci semble due à l'accumulation de l'hydrogène produit par la décomposition de l'eau baignant les éléments du coeur, l'oxygène ayant oxydé les gaines métalliques des "crayons". Les Japonais ne pouvaient pas laisser la pression monter dans le circuit fermé, interne, du réacteur, ou même dans l'enceinte de confinement. Ils ont donc laissé l'hydrogène monter et envahir le local situé au dessus du réacteur. En se mélangeant à l'air, le tout a fait explosion, soufflant le toit de ce local. Cette explosion a suscité le départ d'une onde de choc, suivie de la condensation de la vapeur d'eau produite, ceci étant bien visible sur la vidéo.

L'explosion du numéro 3 semble plus problématique :

 

explosion réacteur 3

Le film montre que des fragments de béton d'une taille impressionnante ont été projetés à des centaines de mètres de hauteur.

 

réacteur japonais

 

L'opinion d'un lecteur :

Voici le schéma des réacteurs de Fukushima, il n’y a pas d’enceinte de confinement au sens ou l’on entend ce terme en France. Les BWR General Electric Japonais, qu’ils soient  signés GE,Hitachi ou Toshiba sont construits par KAJIMA (le BOUYGUES japonais) sur le même modèle, qui évoque les VVR soviétiques, ou même les RBMK de type Tchernobyl : un gros tas de béton avec un hangar en tôle mince dessus.

En haut du bloc de béton, il y a des piscines pour entreposer les éléments combustibles en MOX, les neufs et les vieux, soit environ 20 ans de fonctionnement, ce qui fait pas mal de mégacuries. On peut aussi placer dans les piscines  le couvercle de la cuve, les goujons (boulons), et tout ce qui crache de la radioactivité. Un énorme pont roulant est ancré sur le béton, et sert notamment à la manutention des énormes dalles de béton qui scellent le puits de cuve.

Évidemment, si le cœur n’est plus refroidi, les barres fondent, réagissent avec l’eau et forment de l’hydrogène. Si la cuve est percée, l’hydrogène fuit en passant sous la dalle et s’accumule dans le hangar. Les rejets volontaires devraient se faire par la cheminée de l’usine, bien entendu. Si de l’hydrogène s’est accumulé sous le hangar, c’est bien évidemment contre la volonté des ingénieurs, parce que les tuyaux de vapeur étaient percés, ou même la cuve.

La première explosion, samedi, celle du réacteur numéro 1, est bien une détonation d’hydrogène : peu de débris, une onde de choc bien visible, peu de poussière, quelques tôles qui voltigent : c’est bien une explosion sous le hangar.

Sur le réacteur 3, l’accident a été beaucoup plus grave : je pense que le cœur a fondu, a percé le fond de la cuve en acier et c’est accumulé au fond du puits de cuve en béton.

A force de goutter au fond, le CORIUM a formé une masse critique. (on appelle « corium » la matière du cœur fondu, un mélange d’oxyde d’uranium, d’oxyde de plutonium, de produits de fission et d’acier et de zirconium) C’est ce que l’on appelle un « accident de criticité », ou « excursion nucléaire » (une petite explosion nucléaire, en fait)

Je pense que la puissance de l’explosion a pulvérisé le puits de cuve, et on voit bien les énormes morceaux de béton voltiger dans les airs sur les vidéos. Noter que le bâtiment réacteur fait près de 100 m de haut, ce qui donne l’échelle de ces morceaux de béton : la taille d’un petit bunker du mur de l’Atlantique !

Faites un arrêt sur image et mesurez avec une règle la hauteur maximale du nuage de poussières et de débris : entre 600 et 800 mètres ! Regardez les morceaux de béton et estimez leur taille, toujours avec une règle. Vous croyez toujours que l’enceinte de confinement est intacte ?

Par rapport à Tchernobyl, le problème est que le combustible MOX contient grosso modo DIX FOIS PLUS de plutonium. Le MOX est fabriqué en France à l’usine MELOX située sur la commune de Chusclan. Sa construction a été décidée par M. Jospin.

Les japonais ont construit leur usine de MOX, mais si je me souviens bien il semble qu’elle soit fermée provisoirement (à vérifier) depuis que trois ouvriers avaient malencontreusement mélangé des produits fissiles dans un sceau de trop grande taille, ce qui a endommagé leurs cellules de manière irrémédiable sous l’effet des neutrons produits. Il est difficile de dire si le combustible contenu dans le réacteur 3 de Fukushima a été produit en France ou bien au Japon. Nous pouvons faire confiance à M. Besson pour
nous éclairer sur ce point.

Ne poussons pas de cocoricos : dans le même cas de figure, confronté à une telle explosion, le béton de l’enceinte de confinement des centrales françaises n’aurait pas mieux résisté.

Par contre, dans les EPR français, un système de "tuile à crêpes" en béton réfractaire est censé étaler le corium pour éviter toute criticité, et le refroidir sous forme d'une belle galette radioactive.

 

D'autres images de ce type de réacteur BWR (Boiling Water Reactor). De conception américaine. Un quart du parc mondial. Puissance : de 570 à 1300 mégawatts.

 

bwr

En bleu, la "piscine" dans laquelle étaient entreprosés des éléments extraits du réacteur, "arrêté", dont un lot de "crayons", en vue de leur remplacement.

Selon un lecteur, la mise à l'arrêt d'un réacteur n'est pas immédiate, même si la montée des barres de contrôle stoppe les réactions de fission exo-énergétiques. Ces fissions produisent des éléments ayant une certaine durée de vie, qui continuent, en se décomposant, à produire de la chaleur. C'est la raison pour laquelle il faut continuer de refroidir le coeur d'un réacteur " à l'arrêt ". Le lecteur chiffre à 60 mégawatts la puissance thermique ainsi dégagée. Ainsi, même si un de ces réacteurs était " à l'arrêt ", la mise HS du dispositif de refroidissement par l'impact du tsunami créait un risque de fusion du coeur. Il fallait maintenir le refroidissement du coeur, coûte que coûte. Oui, mais comment ??.

bwr

 

bwr

 

bwr

Description à : http://www.laradioactivite.com/fr/site/pages/Reacteurs_REB.htm

La température de la vapeur est d'environ 300°C et la pression de 70 à 80 atmosphères. Les barres de contrôle, introduites par en dessous, sont poussées par des vérins hydrauliques, et ne peut donc tomber verticalement, par gravité. Dans ces réacteurs, il faut contrôler en permanence le niveau de l'eau à l'état liquide. Ceci est réalisé en utilisant un réservoir de forme torique, situé en bas du dispositif.

Entre la première enceinte, cylindrique, entourant le coeur et la seconde enceinte de confinement, en forme de bouteille, se trouve ( en jaune ) un gaz inerte ( argon ). Une précaution au cas où une montée en température entraînerait la production d'hydrogène, après dissociation de l'eau, l'oxygène dégagé se combinant avec les enveloppes des éléments combustibles, en zirconium. Ainsi l'hydrogène produit, se diluant dans un gaz chimiquement inerte, ne pourrait entraîner une explosion (...).

Les jours et les mois vont passer. Viendra l'heure du bilan. C'est triste à dire, mais le fait que cette catastrophe se soit produite au Japon pourrait peser sur le développement du nucléaire dans le monde et sa réorientation (voir plus loin). Tchernobyl, c'était il y a 25 ans. Et l'Ukraine, c'est loin, c'est grand. Peu importe qu'une région grande comme la Provence ait dû être vidée de ses habitants pendant des décennies et que des milliers de gens soient morts, à l'époque, puis des conséquences de l'irradiation.

Si l'accident nucléaire japonais s'était produit aux Indes, ou en Chine, ou dans un pays de l'Est, qui s'en soucierait, même si les morts se comptaient alors par centaines de milliers, même si les régions empoisonnées étaient immenses.

L'Inde, la Chine, les pays de l'Est, c'est loin. Et puis, tout le monde sait que ces gens font ... n'importe quoi, c'est bien connu. Pour que le monde prenne enfin conscience de la dangerosité du nucléaire civil (ne parlons pas du nucléaire militaire !), que faudrait-il ? Souhaiter que les Japonais connaissent un Tchernobyl-bis, que le quart de leur territoire, surpeuplé, devienne inhabitable pour des décennies, que des vents soufflant vers l'ouest exigent l'évacuation immédiat de Tokyo (distant de 250 kilomètres ) et des habitants des environs, ce qui représente 30 millions de personnes ? Que la pêche dans les eaux nippones devienne problématique, du fait de retombée en mer, dans une zone côtière ?

Dans six mois, "tout sera rentré dans l'ordre". "Le Japon pansera ses plaies", dira-t-on.

Quel média a soulevé le problème clé : la dangerosité de l'implantation de centrales nucléaire en bordure de mer, comme elles le sont toutes, ce qui les rend vulnérables aux tsunamis. Mais si ces implantations furent des erreurs, quid du coût de leur réinstallation sur une simple colline ? Quid du coût des modifications à apporter aux bâtiments pour qu'ils tiennent non à des séismes de force 7, mais à ceux atteignant 9 !!

Il n'y a pas de risque zéro....

 

Derrière cet état de fait, il y a l'incurie des gens qui gèrent le destin des hommes, l'irresponsabilité des scientifiques, l'incompétences des politiques, des décideurs, la cupidité des puissances d'argent, la courte vue. Face à cela l'irréalisme angélique des écologistes qui s'imaginent que le solaire, ou "les économies" vont tout résoudre. Je vais vous dire une chose. Il y a deux mois le local attenant à la maison, contenant le bassin d'aquagym grâce auquel j'ai pu sortir de ma chaise roulante, me tirer moi-même d'affaire, a brûlé, suite à un court-circuit. Sur les murs : un placage de matière plastique, vieux de plus de trente années. Le CES de Pailleron, situé dans le XIX° arrondissement de Paris, où vingt enfants ont trouvé la mort en quelques dizaines de minutes, le night club 5 à 7, à Saint Laurent du Pont, dans l'Isère, 180 morts, ça ne vous dit rien ?

Ce placage n'est en rien ignifugé. Mais son comportement face à un début d'incendie, est redoutable. Soumis à un simple rayonnement, ce matériau se décompose en particules noirâtres, formant un mélange toxique, rapidement asphyxiant, pour qui se trouverait dans l'impossibilité de s'échapper du lieu au plus vite. Mais cette poussière, se mélangeant à l'air, peut alors s'enflammer d'un coup. J'ai vu en une dizaine de minutes émerger de mon local, situé en rez de chaussée, des flammes de 2 mètres. J'ai pu éteindre cet incendie, devenu immédiatement violent, en utilisant le tuyau d'arrosage du jardin et en pulvérisant de fines gouttelettes en haut des flammes, sinon la maison y serait passée. Leur vaporisation rapide a refroidi le brasier, qui a disparu en une minute. J'y ai laissé quelques mèches de cheveu.

Un conseil : si votre maison ou appartement contient des placages d'isolation thermique ou phonique de ce genre, remplacez-les sans attendre par des éléments modernes, incombustibles.

Le local a été remis en état. Au passage, j'ai fabriqué un panneau solaire d'un mètres carré et demi, disposé verticalement sur le mur sud, encastré, camouflé en fausse fenêtre. Mon bassin étant aussi isolé qu'un glacière de camping, par un revêtement de polyuréthane de 8 cm d'épaisseur, doublé de résine polyester et de gel coat, et couvert par des plaques de même nature, son maintien à une température constante de 32° ne requiert que 175 watts. Je pourrai donc entretenir cette température avec mon capteur solaire (un caisson en bois, une plaque de tôle d'un millimètre et demi, un serpentin de cuivre, une plaque en double vitrage de 4 - 6 - 4 et un circulateur ). Mais serait-ce à dire que je pourrais, grâce à cela, chauffer ma maison, faire la cuisine, etc.... ?

Quand nos gentils écolos en appellent aux "nouvelles énergies", les industriels sourient. Comment alimenter les installations industrielles, faire circuler les TGV, fabriquer de l'aluminium, etc ?

Voir plus loin

Ceci étant, tous les pays qui se sont fortement équipés en centrales nucléaires commencent à se poser des questions. En France, les trois quarts de l'électricité consommée est d'origine nucléaire. Nous ne sommes pas en reste en matière d'imprévoyance. Si les centrales japonaises en question accusent 40 printemps, celle de Fessenheim, de 33 ans d'âge, ne possède pas de double enceinte de confinement. Elle ne résisterait pas à un séisme. Lorsque Super-Phoenix a été construit, le toit du local abritant le système de pompage du fluide réfrigérant s'est effondré le 8 décembre 1990 ... sous le poids de la neige ! Personne n'avait envisagé cette éventualité. Eh oui, en Isère, il neige parfois....

En France, nous avons cette absurdité nommée ITER, simple "plan social" et séjour de rêve pour des milliers d'ingénieurs et de techniciens, conscients et complices, qui pourront, avant leur départ en retraite, concéder que " oui, c'était une erreur ...".

Mais ce qui est extraordinaire c'est que deux scientifiques, Balibar et notre prix Nobel Charpak, récemment décédé, en même temps qu'ils dénonçaient ce projet ruineux, militaient pour la reprise du projet nucléaire civil le plus dangereux que l'homme ait pu imaginer à ce jour : le surgénérateur à neutrons rapides.

 

charpak

Georges Charpak, prix Nobel, décédé le 29 septembre 2010

Celui-ci prônait, juste avant son décès, avec Balibar, l'implantation de surgénérateurs à neutrons rapides

 

superphoenix

Superphoenix, surgénérateur à neutrons rapides de Creys Malville, dans le Gard

(en cours de démantèlement, arrêté en 1998)

Le 8 décembre 1990 le plafond du hall de pompage du réacteur, mal calculé, s'est effondré sous le poids de la neige

Pour comprendre le principe général, se référer à ma bande dessinée où tout ceci se trouve expliqué. Les réactions de fission produisent des neutrons. Si cette production s'effectue dans un environnement aqueux ( réacteur à eau pressurisée ) cette eau joue le rôle de modérateur, ralentit ces neutrons.

Si on s'arrange pour que ces neutrons ne soient pas ralentis, il pourront provoquer une transmutation d'uranium 238 (non fissile) en Plutonium 239 ( fissile, n'existant pas dans la nature ). C'est ainsi que dans des réacteurs à usage militaire on fabrique l'explosif des bombes à fission. On associe à un réacteur à neutrons rapides une couverture fertile, en U 238, qui se transforme au fil du temps en Pu 239.

On peut transposer ce schéma à celui de réacteurs civils, avec un danger d'utilisation considérable. Le fluide caloporteur ne peut plus être de l'eau pressurisée, qui ralentit les neutrons. On doit alors opter pour un montage où la chaleur produite par la fission est prélevée dans le coeur en y faisant circuler du sodium fondu, à 550°C. Celui-ci ne ralentit pas les neutrons. Mais, libéré, celui-ci s'enflamme spontanément dans l'air.

Dans ce type de réacteurs, dits surgénérateurs, on utilise la fission de plutonium. Dans un surgénérateur comme Superphoenix (qui est censé renaître de ses cendres...) un fonctionnement à l'année représenterait une consommation de près d'une tonne de plutonium (contre 27 tonnes d'uranium, à puissance équivalente). Les neutrons émis par ces réactions de fission pourraient transformer une couverture en U 238 en Pu 239.

L'uranium 238 est le déchet du retraitement nucléaire effectué à la Hague. C'est en quelque sorte la "cendre"' d'un fonctionnement à l'uranium, où c'est l'isotope 235 qui est consommé.

 

schéma de réacteur au sodium

Le surgénérateur à neutrons rapides.

 

En jaune, 5000 tonnes de sodium fondus, portés à 550°. S'enflamme spontanément au contact de l'air et explose au contact de l'eau (en cas d'incendie d'une mase de sodium, les dernières personnes à appeler sont ... les pompiers !).

Dans le coeur, en rouge, les éléments combustibles, en plutonium. Autour, en rose, les éléments "fertiles", en Uranium 238, que le bombardement neutronique transforme en plutonium 239. A droite le système d'échangeur, de turbine à gaz et de contact avec la "source froide".

Sous cet angle, on pourrait dire que le surgénérateur fonctionnerait en " brûlant les cendres issues des réacteurs fonctionnant à l'uranium 235". Comme la France est très riche en "cendre", du fait du fonctionnement de ses réacteurs à uranium, et des services qu'elle offre aux pays voisins en matière de retraitement, elle accéderait ainsi à une indépendance complète en matière de combustible fissile.

Un beau rêve

Le hic est l'extrême dangerosité du fonctionnement d'un tel réacteur. Sont coeur est à 550° au lieu de 300°. Le recours au sodium fondu comme fluide caloporteur représente un risque majeur d'incendie, en cas de contact de celui-ci avec l'air. Ajoutons l'extrême radiotoxicité du plutonium. Un dixième de milligramme de plutonium, inhalé et se fixant dans les poumons, suffit à provoquer une tumeur cancéreuse. Faites le calcul. Chargé d'une tonne de plutonium, un surgénérateur recèle une quantité suffisante de ce poison pour tuer dix milliards d'êtres humains.

Le moindre incident notable sur un surgénérateur pourrait faire dix millions de victimes.

Recommander une évolution du nucléaire français vers le formule des surgénérateurs à neutrons rapide et de l'irresponsabilité complète. Mais, en France, un réacteur de ce type est de nouveau à l'étude.

Simple remarque : la France, de même que d'autres pays, dont en particulier le Japon, utilise comme matière fissile, dans 20 de ses réacteurs un mélange appelé MOX. C'est un mélange de deux composants. 6 à 7 % de plutonium, dilués dans 93 % d'uranium 238, non fissile. Partout où il y a du plutonium, la situation n'est pas de tout repos (par exemple au Japon.....).

Alors, quelle est la solution ? ....

J'ai vu que dans son numéro de mars 2011 la revue Nexus avait publié un article de dix pages sur la Z-machine, signé par un certain Jérôme Dangmann "professeur de science physique dans l'enseignement supérieur" (en fait enseignant dans une classe de "prépa"), qui est un coupé-collé de l'article que j'avais installé sur mon site en 2006, à l'adresse http://www.jp-petit.org/science/Z-machine/papier_Haines/papier_Haines.htm, modulo des confusions et imprécisions.

Dans cet article manquent des données plus récentes, des éclaircissements concernant ce projet et les mécanismes qui sont à l'oeuvre, qu'on ne pouvait y trouver, puisqu'ils n'étaient pas présents sur mon site. Je vais publier une suite à cet article, dans la revue Nexus, en corrigeant au passage les erreurs contenues.

J'ai des informations "brûlantes" à communiquer, qui sont de première main, puisque j'ai été les recueillir dans deux congrès internationaux, Vilnius 2008 et Jeju, Corée, octobre 2010 ) et auprès de Malcom Haines lui-même. Nexus a accepté de publié l'article. Ces informations démultiplieront conjointement les espoirs et les craintes liées à cette nouvelle technologie des ultra-hautes températures. Sans déflorer le sujet (l'article sera vite rédigé) :

- Les Américains ont bien obtenu 3,7 milliards de degrés en 2005 dans la Z-machine de Sandia. Optant pour les applications militaires en priorité (bombes à fusion pure), ils désinforment à tout va. Avec ZR l'intensité est passée de 17 à 26 millions d'ampères et les performances de l'engin sont désormais tenues secrètes.

 

 

http://jp-petit.org/nouv_f/seisme_au_japon_2011/seisme_japon_2011.htm

 

Partager cet article
Repost0

commentaires

Présentation

  • : R-sistons à la désinformation
  • : Blog d'opinion et de résistance. Les médias ne sont pas libres, mais simples outils de désinformation et de propagande pour l'Occident militaro-financier. Pas de liberté d'informer, donc pas de liberté ni de démocratie. La désinformation est l'ennemie Public N°1. Eva, journaliste-écrivain, libre-penseuse, dénonce et interpelle.
  • Contact

Profil

  • Eva R-sistons
  • Journaliste de profession. Radio,TV,presse,productrice émissions. Auteur de plusieurs ouvrages chez éditeurs de renom. Milite pour une information libre,plurielle,diversifiée, indépendante des grands groupes.
  • Journaliste de profession. Radio,TV,presse,productrice émissions. Auteur de plusieurs ouvrages chez éditeurs de renom. Milite pour une information libre,plurielle,diversifiée, indépendante des grands groupes.

Recherche

Archives

Pages